
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SSEAL: Self-Supervised Explorative Agent Learning

Anonymous Authors1

Abstract

Large Language Models (LLMs) have concur-
rently demonstrated remarkable abilities to power
autonomous, feedback-driven systems and learn
complex patterns through in-context examples.
Despite this progress, efficiently adapting LLM-
based agents to ambiguous environments and
new tasks remains challenging, and finetuning
to each use case is impractical. We intro-
duce Self-Supervised Explorative Agent Learn-
ing (SSEAL), a novel framework that enables
LLM-based agents to autonomously explore, dis-
ambiguate, and learn their environment in a self-
supervised manner. In a one-time exploration
phase, the agent systematically generates and ex-
ecutes exploratory actions, and uses them to distill
an optimized input prompt. This input includes
(1) clarified task instructions, (2) updated envi-
ronment context, and (3) few-shot trajectory ex-
amples, used in an execution phase to improve
environment understanding. We evaluate SSEAL
across the three diverse task domains of function-
calling, robotics, and software engineering, and
demonstrate that SSEAL improves performance
on downstream tasks. Our work represents a step
toward robust, self-supervised learning frame-
works capable of improving performance in real-
world, dynamic deployments. Our code and im-
plementation is made available here.

1. Introduction
Recent developments in the transformer model architec-
ture have shift the focus towards creating large, general
models rather than small task specific models (Vaswani
et al., 2023). For example Large Language Models (LLMs),
have show incredible in-context learning and reasoning abil-
ity (Brown et al., 2020; Wei et al., 2023). Thus, LLMs

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

have been applied to a wide variety of tasks. However,
while LLM Agents have increasingly complex and general
abilities, users still often deploy these models to specific
use-cases and environments. Despite this, it is often too
expensive or data-scarce to fine-tune these general models
to optimize specific task performance. Therefore, we desire
a method to adapt very general models to given specific
environments and the tasks found in those environments –
all in a fully self-supervised manner.

We consider the intuition that an agent’s environment un-
derstanding can be separated from task execution. That is,
instead of re-learning the environment at query time each
time anew, an agent can first systematically explore and
disambiguate an environment, retain this information, then
execute on a set of queries. Moreover, we consider the
strong in context learning and chain-of-thought capabilities
of these general language models (Brown et al., 2020; Wei
et al., 2023).

We introduce Self-Supervised Explorative Agent Learning
(SSEAL), a framework to improve downstream agent per-
formance by first employing a self-supervised exploration
procedure to “fine-tune” the agent on a given task environ-
ment. Formally, consider some agent placed in environment
context c in which it will execute actions on future input
queries Qc. During SSEAL, we first let the agent explore
environment context c, letting the agent learn how to op-
erate on c successfully in an unsupervised manner. Then,
this exploration should yields learning that increases sub-
sequent performance on queries Qc. Importantly, SSEAL
treats agents as a black box—we assume we cannot mod-
ify the weights of the model. Rather, SSEAL optimizes
downstream performance by optimizing the input prompt
P := {ρtask, c, ξ} where ρtask is the task instructions, c is
the defined environment context, and ξ are the few-shot
examples, if any. Therefore, SSEAL allows for an agent to
learn in-context in a self-supervised manner. The learned in-
formation is propagated to downstream queries for all time,
optimizing long run task performance without supervision.

We show that the SSEAL framework can massively increase
task performance— particularly in ambiguous environments.
For example, on an adversarially perturbed task from Nexus-
Bench, we seen SSEAL take GPT-4o’s task accuracy from
5% to over 80%. Alternatively, on our more real world task

1

https://anonymous.4open.science/r/SSEAL-FF72/README.md

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

SSEAL: Self-Supervised Explorative Agent Learning

we see GPT-4o’s performance increase from less than 20%
to over 80%. Moreover, we show that stronger models can
effectively transfer their learnings during SSEAL to other
smaller and weaker models, allowing these weaker models
to achieve similar task performance despite their smaller
size.

In summary, our contributions are threefold:

1. We propose Self-Supervised Explorative Agent Learn-
ing (SSEAL), a novel learning algorithm for black-box
agents with in-context learning ability.

2. We show examples where SSEAL can be effective
deployed to increase performance in function calling,
robotic manipulation, and software engineering tasks.

3. We demonstrate how SSEAL can be used to transfer
performance from stronger models to weaker models
at low cost.

2. Related Work
2.1. Agents

Large Language Models (LLMs) have demonstrated remark-
able in-context learning abilities, allowing them to adapt to
various tasks without requiring parameter updates (Brown
et al., 2020). Additionally, chain-of-thought (CoT) prompt-
ing has been shown to significantly improve reasoning ca-
pabilities by guiding models to produce intermediate steps
in problem-solving (Wei et al., 2023). Combining these
insights, recent advancements have focused on developing
reasoning-based agents.

ReAct (Reasoning and Acting) is a notable framework that
leverages the CoT reasoning ability of LLMs to iteratively
reason about their environment and act accordingly, lead-
ing to better performance in interactive tasks (Yao et al.,
2022). These agents dynamically generate reasoning steps,
observe the environment, and adjust their behavior, provid-
ing a strong foundation for adaptive problem-solving. While
ReAct successfully integrates reasoning and action, its re-
liance on task execution during interaction limits its ability
to pre-learn the environment context, which our SSEAL
framework addresses.

More broadly, agent-based frameworks have been applied
to tasks like tool use (Schick et al., 2023) and multi-step
decision-making (Huang et al., 2022; Gautam et al., 2024).

2.2. Learning Through Exploration

Exploration-based methods have been widely used in re-
inforcement learning (RL) and autonomous agents to en-
able skill acquisition and environment understanding. Ap-
proaches like intrinsic motivation (Singh et al., 2004; Pathak

et al., 2017) and self-play (Sukhbaatar et al., 2018) encour-
age agents to explore their environment by rewarding novel
behaviors or self-improvement.

Voyager (Wang et al., 2023) demonstrates that LLMs can
effectively explore and learn in open-ended environments,
specifically within the Minecraft domain. Voyager employs
exploration to acquire skills iteratively, enabling an agent to
improve its performance over time. While similar in con-
cept, SSEAL introduces a key distinction: it confines the
exploration phase to the beginning of the task execution pro-
cess for efficiency, thereby avoiding continuous exploration
overhead. Moreover, we show SSEAL generalizes beyond
a single domain and can be deployed across diverse task
environments.

Recent work has also explored meta-learning techniques
to enable agents to adapt quickly to new tasks (Finn et al.,
2017). These methods aim to prepare agents for generaliza-
tion by optimizing their learning processes during training.

3. SSEAL
Generally, given some environment and task, we will be
given some preexisting environment context c, basic task
instructions ρtask, and an empty set of few-shot examples
ξ ← {}. For complex environments, c and ρtask will con-
tain ambiguities. For example, consider a complicated API
sent to a function calling agent. In this case, the API is c,
and might not contain docstrings explaining how exactly
to use the functions, or may under explain how functions
interact. Likewise, the instructions to the model on how
to call functions ρtask might not properly explain exactly
how the environment processes functions. The more com-
plex an environment and task, the more difficult it is to
define c and ρtask such that no ambiguities are present. Thus,
SSEAL uses self-supervised exploration to systematically
identify and disambiguate the environment. While existing
agent frameworks, such as ReAct (citation) employ chain-of-
thought reasoning to overcome ambiguities, an agent must
do so on a per-query basis. This means the agent needs may
make the same mistake over and over again across many
queries. With SSEAL, the exploration phase removes these
issues before query time, and can execute on Q without
error.

We detail the SSEAL in Algorithm 1. We let SSEAL
start with some initial ρexplore, ρoptimize, ρtask, where ρexplore,
ρoptimize are engineered and assumed to be general enough to
apply to the expected domain of input environment context
c ∈ C. The agent then explores the environment based on
c, collecting a trajectory of actions (a) and observations (o)
pairs τ⃗ . Then based on the collected trajectory of informa-
tion, the agent constructs ρclarify, ĉ, and few-shot examples
ξ, which are used to create the optimized prompt P ∗ for

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

SSEAL: Self-Supervised Explorative Agent Learning

query time downstream. After a high quality exploration
procedure, we reason that subsequent performance on Qc

with using P ∗ := { ˆρtask, ĉ, ξ̂} will exceed the naive prompt
P := {ρtask, c, ξ}. We note that as |Qc| → ∞ the additional
cost of SSEAL is negligible.

Algorithm 1 SSEAL Algorithm
Initialize ρexplore, ρoptimize, ρtask, c
τ⃗ ← []
for each exploration iteration do
a← Agentexplore(ρexplore, c, τ⃗)
o← execute(a)
τ⃗ ← concat(τ⃗ , [(a, o)])

end for
ρclarify, ĉ, ξ ← Agentexplore(ρoptimize, c, τ⃗)
ˆρtask ← ρtask ∪ ρclarify

P ∗ ← { ˆρtask, ĉ, ξ}
deploy Agentexecute(P

∗, q) for q ∈ Qc

4. Function Calling Environments
A common usage of LLM-as-agents is function calling,
where an LLM is prompted to interact with some functional
environment (Schick et al., 2023). This can vary from call-
ing black box functions, to fully agent systems that can
execute arbitrary code. Notably, successful function call-
ing agent systems need to carefully tune prompts, function
definitions, few-shot examples to optimize agent behavior,
which is time consuming and costly. In the following sec-
tion, we detail how we use SSEAL to optimize performance
on function calling tasks.

4.1. Agent Framework

We use a ReAct framework to perform function calls (Yao
et al., 2022). When attempting to solve a given user query,
and agent is given the list of available functions in the envi-
ronment (in context of SSEAL this is c), and any doc-strings
that come with the functions. Additionally, the model is
instructed to “think step by step” before output function
calls to best satisfy the user query. The agent is then shown
the result of those calls if any. Once the agent believes the
user query has been satisfied, the agent ends the trajectory.

Eliciting Exploration: We elicit the SSEAL exploration
loop through a meta ReAct loop before any queries are
made. We prompt the model to explore the functional envi-
ronment in order to understand how the environment should
and could be used. We detailed the prompt below in Ap-
pendix Section A.1

In each exploration iteration, the ReAct agent reasons on
which function calls it needs to make to further understand
the environment. Then it submits the functions to the en-
vironment for execution. The environment then executes

the functions and returns the results back to the model to
reflect on function behavior. Based on the environment feed-
back, the agent can further submit more function calls to the
environment.

Learning Distilation: While the exploration agent can learn
the environment, the information learned during exploration
needs to be efficiently passed to the downstream execution
agent which will act upon the user queries. We cannot sim-
ply append the entire exploration trajectory to the execution
agent because the exploration trajectory can be very long.
This both stresses the context length of the agent and also
may incur excessive input token costs. Therefore, in the
function calling case, we propagate learned information
via: (1) function doc-string modifications, (2) additional
information/clarifications, (3) few-shot examples.

For a function calling task, our environment context c is des-
ignated by the available functions and their descriptions. To
construct ĉ after exploration during the SSEAL procedure,
we prompt the exploration agent to rewrite the function doc-
strings and argument types. The prompt is shown below in
Appendix Section A.1.1.

To construct ρclarify we prompt the explore agent to docu-
ment any clarifications surrounding the environments. For
example, the agent may clarify that “assignment statements
are not allowed” or “always call ls to check which files are
in the system before calling functions”. Finally, we construct
ˆρtask by appending ρclarify to ρtask. We document the prompt

for this task below in Appendix Section A.1.3.

To construct ξ we prompt the explore agent to generate
few shot examples based on on its exploration trajectory
τ⃗ . The examples allow the exploration agent to reason on
possible down stream queries and how it should process
them. This allows thr exploration agent to pass on this
latent exploration information more readily. The prompt for
generating examples is shown below in Appendix A.1.3.

4.2. Experiments

We test SSEAL in different environments.

1. NexusBench: Testing the SSEAL framework on
function calling requires benchmarks with fully
implemented function so that environment feedback
is possible. As such, we utilize NexusBench’s
LangchainRelational task in which an agent
satisfies user queries on a mock relational database.
We additionally modified LangchainRelational
into LangchainRelational-NoSig in which
we remove the function signature to increase
environment ambiguity. Finally, we construct
LangchainRelational-Adversarial in
which function names, argument names, and doc

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

SSEAL: Self-Supervised Explorative Agent Learning

Figure 1. SSEAL effect on agent performance on
LangchainRelational-Adversarial. 0 exploration
iterations means SSEAL is not used.

strings are all obstructed, leaving only the argument
types intact.

2. Linux Terminal: We additionally, construct a new
task more representative of real use cases called
LinuxTerminal, in which the agent needs to ex-
ecute natural language queries on a simplified mock
Linux filesystem environment, which altered function
names. We construct the LinuxTerminal to state-
ful, requiring the end state to match the expected end
state for the agent to be considered successful.

3. Sports Data: We construct an additional function call-
ing task, SportsData where the agent is expected
to execute a natural language query on a set of sports
related dataframes using a provided customized python
query API. Sports data is a particularly difficult task,
and has many elements that go against the agent’s pre-
sumptions of behavior.

We follow the function calling setup detailed in Section 4.1.
To demonstrate adaptability to arbitrary function calling con-
texts, we use the same exploration and update instructions
ρexplore and ρoptimize. We test our SSEAL framework on the
above tasks.

4.3. Results

NexusBench:

We find that SSEAL is naturally very effective on
LangchainRelational-Adversarial, with 5-8x
performance improvements when utilizing exploration (Fig-
ure 1). In fact, GPT-4o and Claude-3.5-Sonnet, both the
most expensive and capable models tests, can nearly recon-

Figure 2. SSEAL on LinuxTerminal task: number of exporta-
tion iteration vs task execution accuracy.

struct performance with respect to the non-adversarial case
(Figure 7). Moreover, we find larger, more capable models
are able to experience greater gain from SSEAL. Smaller
models seem to show gain when the number of exploration
steps is lower, but seem to “overfit” as exploration steps
increase. We also find that on tasks that have very little am-
biguity to begin with, such as LangchainRelational,
SSEAL does not decrease performance when used on
stronger models. However, smaller models may suffer from
performance collapse.

Linux Terminal:

The LinuxTerminal task shows similar trends to the
NexusBench tasks. In LinuxTerminal the task is much
more complex compared to LangchainRelational.
Moreover, LinuxTerminal requires the agent to man-
age a state, which may be different from the exploration
state, causes further difficulties at test time. However, ref-
erencing Figure 2, stronger models such as GPT-4o and
Claude-3.5-Sonnet show marked improvements after under-
going SSEAL. GPT-4o increases task accuracy from 53%
to 82% with just 4 exploration steps. Claude-3.5-Sonnet
increases score from 35% to 76% after 12 steps of SSEAL.
Beyond the optimal steps for each model, SSEAL proce-
dure begins to overfit. However, over-fitted performance is
generally still near or above baseline for these models.

The increased difficulty of LinuxTerminal shows the
limitations of using weaker models for SSEAL. None of
the weak models are able to improve themselves. Notably,
Claude-3.5-Haiku performance drops to effectively 0.

Sports Data:

Considering Figure 3, we notice that similar to

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

SSEAL: Self-Supervised Explorative Agent Learning

Figure 3. SSEAL on SportsData task: number of exportation
iteration vs task execution accuracy.

LinuxTerminal, the more complex SportsData task
makes improvement significantly more difficult for weaker
models. Notably, Claude-3.5-Sonnet is able to achieve
monotonically increases performance as it undergoes more
SSEAL exploration steps. Other stronger models, GPT-4o
and Llama-3.3-70B-Instruct show saturating performance in-
creases, with little overfitting. Alternatively, weaker models
such as Claude-3.5-Haiku, GPT-4o-mini, and Firefunction-
V2 see overfitting behavior or little improvement to begin
with.

4.4. Mixing Models

Before, we considered a simple setup where both
Agentexplore and Agentexecute use the same underlying
LLM. However, since Agentexplore passes learned infor-
mation through an optimized task prompt, Agentexplore
can use a different model that Agentexecute. We lever-
age the assumption that exploration is a more difficult task
than query execution after exportation has already done the
brunt of the reasoning work. Additionally, consider that
Agentexplore only needs to run once per environment, while
Agentexecution runs for all queries for all time. Therefore,
we consider a setup where Agentexplore is a stronger, more
costly model, and Agentexecute is a cheaper model. We
demonstrate this setup can achieve performance similar to
always using a strong model, and much better than always
using a weak model.

In Figure 4, Figure 9, and Figure 5 we should the results
of using stronger models during exploration while switch-
ing to GPT-4o-mini, the cheapest model, during execution
on each task environment. We show that using a stronger
model only during exploration can greatly increase task
performance. In particular with Figure 4, we see that on

Figure 4. LangchainRelational-Adversarial task ac-
curacy vs exploration steps for different exploration agents, while
always using GPT-4o-mini as the agent during task execution.

the LangchainRelational-Adversarial environ-
ment, using Claude-3.5-Sonnet as the exploration model
allows GPT-4o-mini to approximately recover similar per-
formance compared to using Claude-3.5-Sonnet at execution
time as well.

Appendix Figure 9 shows that even in more complex envi-
ronments, the model mixing strategy gives massive perfor-
mance improvements for weaker execution models, albeit
with seemingly less stability with respect to the number of
iterations. Using both Claude-3.5-Sonnet and GPT-4o yield
Pareto frontier performance compared to just using GPT-
4o-mini for exploration, with both strong models pushing
GPT-4o-mini’s performance from a previous best of 35% to
around 70%— doubling task accuracy for negligible long
run cost.

Again, in Figure 5 we see using a strong model for just ex-
ploration yields a huge performance increase. In particular,
at its best, Claude-3.5-Sonnet is able to teach GPT-4o-mini
to reconstructs its own full performance, increasing GPT-
4o-mini’s peak score by 280%.

This suggests that stronger models can successful transfer
their learned information to smaller models through prompt-
ing alone. SSEAL provides a method to break problems
into ambiguous and disambiguated sub-parts, allowing for
the hierarchal usage of strong and weak models to handle
exploration and execution, respective, thereby optimizing
price against performance.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

SSEAL: Self-Supervised Explorative Agent Learning

Figure 5. SportsData task accuracy vs exploration steps for
different exploration agents, while always using GPT-4o-mini as
the agent during task execution.

5. Towards Real World Deployment
Beyond basic function-calling tasks, we explore how
SSEAL can be leveraged for two complex, real-world tasks.

5.1. Robot Agents

We first investigate the application of SSEAL to a robotic
manipulation task, focusing on how an agent can learn to
effectively utilize a Vision-Language-Action (VLA) model
as a tool to complete more general robotic tasks. More
specifically, we set up a central planning agent that can send
language instructions to the VLA, observe the outcomes of
the robotic trajectory executed by the VLA, and iteratively
learn from such observations.

This environment poses two unique challenges. (1) The
VLA’s behavior, unlike traditional tools, cannot be easily
documented or described, making it difficult for a planning
agent to understand its capabilities. (2) The temporal hori-
zon of action execution is unknown, meaning the agent is
unsure how long to wait before evaluating the outcome of
an action or sending a new action. Both of these challenges,
which would be difficult for a traditional agent framework
to handle, are what motivate us to apply autonomous explo-
ration.
5.1.1. SETUP

For this application of SSEAL, we deploy the agent-based
system illustrated in Figure 6. The VLA operates at high
frequency, executing instructions provided by the planning
agent and writing third-person images of the environment to
a shared memory buffer. Concurrently, a Vision-Language
Model (VLM) periodically analyzes the trajectory of images

Figure 6. VLA as a tool We design a system where an agent sends
instructions for the VLA to execute, observes the resulting robotic
trajectory, and updates its memory of what the VLA is capable of.

and provides updates to the agent on whether the current
instruction was successfully completed, failed, or is still in
progress. The agent, upon receiving this feedback, decides
what instruction to send to the VLA next.

We utilize the OpenVLA model (Kim et al., 2024), a state-
of-the-art open-source VLA, and the simulated Libero en-
vironment and task suites (Liu et al., 2023). The Libero
environment provides rendered third-person images as input
to OpenVLA, as well as ground truth success information
for each task.

5.1.2. SSEAL IMPLEMENTATION

We implement SSEAL by initializing an exploration phase
where the agent interacts with the VLA to identify the space
of instructions the model can reliably execute, and then use
these learnings for downstream query execution.

The exploration proceeds as follows: (1) The agent, given
an image of the scene, generates a set of exploratory tasks
designed to probe the VLA’s behavior. (2) The VLA exe-
cutes the proposed tasks, while the VLM-powered feedback
module classifies the success or failure of each task based
on rendered images from the environment. (3) The agent re-
ceives the resulting task-success tuples, which it ultimately
uses as an in-context learning prompt for downstream tasks.

We then evaluate the agent’s ability to disambiguate com-
plex instructions, and show that SSEAL offers a significant
performance improvement.

5.1.3. EXPERIMENTS

Our primary experiment evaluates whether the agent can
learn to translate high-level instructions into prompts that
the VLA can execute successfully. To do so, we conduct a
three-part study:

Part 1: Evaluation. We first seek to evaluate how impor-
tant prompting language is to the VLA. We take the original
task suite of instructions, and use an LLM to generate a

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

SSEAL: Self-Supervised Explorative Agent Learning

rephrased dataset where each instruction gets mapped to a
slightly rephrased version of itself. For example, the original
task “put the wine bottle on the rack” might get rephrased
to “locate the wine bottle and transfer it to the wine rack”.
We evaluate the VLA on this dataset and find that the suc-
cess rate drops from 77.5% to 40.6%. The prompting lan-
guage proves to be extremely important, and therefore we
see a unique opportunity for autonomous learning and im-
provement. We use this rephrased dataset as a baseline and
measure the agent’s ability to prompt the VLA successfully.

Part 2: Privileged Exploration. Next, we investigate
whether an agent can learn to prompt the VLA if given
privileged information about the success outcome of each
instruction. We sample instruction-success tuples collected
in the previous experiment to create an in-context learning
prompt, that asks the agent to analyze these outcomes and
output an updated instruction. With this method, the aver-
age success rate across tasks improves significantly, with
a 17% increase over the baseline instructions. However,
this method is privileged in two regards: (i) the success
values are ground-truth labels provided by the simulator,
which is not possible in a real-world deployment, and more
importantly (ii) the agent did not choose to execute these
instructions, they were chosen in a supervised manner.

Part 3: Autonomous Exploration. To apply our SSEAL
framework, we remove the assumption of ground-truth suc-
cess information from the simulator and ask the agent to
explore the instruction space of the VLA on its own. Impor-
tantly, the agent starts off with absolutely no information
of what the VLA is capable of, what tasks it was trained
on, or what a VLA even is. As described in Section 5.1,
the agent first generates a wide range of exploratory tasks,
sends them to the VLA to execute, and the VLM feedback
module classifies them as successful or not. Similar to
part 2, these explored instruction-success tuples are used
for in-context learning, and we evaluate the agent’s ability
to output a successful instruction. As seen in Section 1,
SSEAL leads to a 9% increase in success rate compared to
baseline instructions.

Method Success Rate

Baseline Instructions 40.6%
Privileged Exploration 57.5%
Autonomous Exploration (with SSEAL) 49.4%

Table 1. Success rates for different instruction methods. Au-
tonomous exploration leads to a significant improvement over
baseline instructions.

The results highlight the efficacy of SSEAL in systemat-
ically learning to use VLAs as tools. By autonomously
disambiguating the instruction space through exploration,

SSEAL can overcome some of the limitations of VLAs’ sen-
sitivity to language variations. While the privileged supervi-
sion experiment serves as an upper bound, the autonomous
exploration results demonstrate that meaningful gains can
be achieved without privileged information. Furthermore,
simply asking the agent ”what is this robotic model capable
of?” after the SSEAL process leads to a well-defined and
accurate response that would likely not be possible without
exploration.

However, we do observe that the VLM feedback module
introduces occasional inaccuracies, particularly when evalu-
ating edge-case tasks proposed by the agent. This suggests
that future improvements to off-the-shelf VLMs could fur-
ther enhance the performance of SSEAL in robotic environ-
ments.

5.2. Software Engineering Agents

Recent works in AI for code have moved past
autocompletion-based models and introduced end-to-end
code-editing systems with strong performance (Gauthier,
2024; Wang et al., 2024; Arora et al., 2024; Chen et al., 2024;
Brown et al., 2024). However, similar to the other agent
scenarios we explore for function calling, these systems
are often initialized with an understanding of the task they
will perform through user generated examples in-context
or previous trajectory demonstrations (Yang et al., 2024;
Dehghani et al., 2021; Kapoor et al., 2024). We aim to re-
move this dependency by extending SSEAL to SWE-agent;
we choose SWE-agent due to its high open-source scores
on various benchmarks (Yang et al., 2024). We evaluate
on SWE-bench-lite, the most commonly used bug-fixing
benchmark for software engineering agents (Jimenez et al.,
2024).

Due to cost limitations, we run baselines using GPT-4 Turbo
with 1 exploration iteration, where the list of function APIs
is given to the agent, and it tests each one as many times as
the model sees fit in a testbed repository. We share prompts
and more details in Appendix Section A.1.4. SSEAL im-
proves performance over having no demonstration and is
comparable to a successful trajectory in the context window
of an agent1.

Demonstration Type Resolution Rate

No Demonstration 16.33%
Demonstration 18.00%
SSEAL 18.67%

Table 2. SWE-agent scores on SWE-Bench-lite with ablations on
the in-context demonstration.

We find that exploration critically helps in the function call-

1We use numbers as reported in (Yang et al., 2024).

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

SSEAL: Self-Supervised Explorative Agent Learning

ing behavior of an agent. Specifically, previous work has ac-
knowledged the difficulty of editing steps for coding agents,
and we find that using editing tools beforehand and commu-
nicating that understanding through an in-context example
limits the percent of trajectories with failed edit steps from
51.7% to 44.6%.

5.2.1. ADAPTING TO ENVIRONMENT CHANGES

SSEAL, by functioning as a replacement to the in-context
example, empirically teaches SWE-agent new explorative
behaviors. To test this, we also explore the introduction of
new agent tools during the execution of a task. Building on
related work about environment policies that communicate
updates to deployed agents, we similarly pass text to the
agent that a new tool is available for use by the agent. We
empirically observe that our agents can generalize to new
functions and trigger a SSEAL-like exploration iteration.
We leave it to future work to explore online tool learning in
extended setups and benchmark similar empirical findings.

6. Conclusion
In this work, we present a novel framework enabling LLM
agents to autonomously adapt to ambiguous environments
without fine-tuning or human interventions. SSEAL lever-
ages self-supervised exploration to clarify task instructions,
refine environment contexts, and generate effective few-
shot examples. Importantly, this information is efficiency
distilled into a single prompt for all future use cases.

Experiments across function calling, robotics, and software
engineering consistently demonstrate that SSEAL signifi-
cantly boosts performance on downstream tasks. Further-
more we show SSEAL with a stronger model can improve
downstream performance of a weaker model, a powerful
paradigm for balancing cost with performance. We open-
source our implementation to facilitate further research into
agent learning and adaptive systems. SSEAL represents a
significant step towards realizing self-adaptive agents capa-
ble of thriving in dynamic real-world settings.

7. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arora, D., Sonwane, A., Wadhwa, N., Mehrotra, A., Utpala,

S., Bairi, R., Kanade, A., and Natarajan, N. Masai: Mod-
ular architecture for software-engineering ai agents, 2024.
URL https://arxiv.org/abs/2406.11638.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Chen, D., Lin, S., Zeng, M., Zan, D., Wang, J.-G., Cheshkov,
A., Sun, J., Yu, H., Dong, G., Aliev, A., Wang, J., Cheng,
X., Liang, G., Ma, Y., Bian, P., Xie, T., and Wang,
Q. Coder: Issue resolving with multi-agent and task
graphs, 2024. URL https://arxiv.org/abs/
2406.01304.

Dehghani, M., Tay, Y., Gritsenko, A. A., Zhao, Z., Houlsby,
N., Diaz, F., Metzler, D., and Vinyals, O. The bench-
mark lottery, 2021. URL https://arxiv.org/
abs/2107.07002.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks, 2017. URL
https://arxiv.org/abs/1703.03400.

Gautam, D., Garg, S., Jang, J., Sundaresan, N., and Moghad-
dam, R. Z. Refactorbench: Evaluating stateful reasoning
in language agents through code. In NeurIPS 2024 Work-
shop on Open-World Agents, 2024.

Gauthier, P. Aider: Ai-powered coding assistant, 2024.
URL https://github.com/paul-gauthier/
aider.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents, 2022. URL
https://arxiv.org/abs/2201.07207.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. R. SWE-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=VTF8yNQM66.

Kapoor, S., Stroebl, B., Siegel, Z. S., Nadgir, N., and
Narayanan, A. Ai agents that matter, 2024. URL
https://arxiv.org/abs/2407.01502.

8

https://arxiv.org/abs/2406.11638
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.07002
https://arxiv.org/abs/2107.07002
https://arxiv.org/abs/1703.03400
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://arxiv.org/abs/2201.07207
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2407.01502

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

SSEAL: Self-Supervised Explorative Agent Learning

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakr-
ishna, A., Nair, S., Rafailov, R., Foster, E., Lam, G., San-
keti, P., et al. Openvla: An open-source vision-language-
action model. arXiv preprint arXiv:2406.09246, 2024.

Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., and
Stone, P. Libero: Benchmarking knowledge transfer for
lifelong robot learning, 2023. URL https://arxiv.
org/abs/2306.03310.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion, 2017. URL https://arxiv.org/abs/1705.
05363.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T.
Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/
2302.04761.

Singh, S. P., Barto, A. G., and Chentanez,
N. Intrinsically motivated reinforcement
learning. In NIPS, pp. 1281–1288, 2004.
URL http://papers.nips.cc/paper/
2552-intrinsically-motivated-reinforcement-learning.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam,
A., and Fergus, R. Intrinsic motivation and automatic
curricula via asymmetric self-play, 2018. URL https:
//arxiv.org/abs/1703.05407.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models, 2023.
URL https://arxiv.org/abs/2305.16291.

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., Tran, H. H., Li, F.,
Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N.,
Zhang, Y., Hui, B., Lin, J., Brennan, R., Peng, H., Ji,
H., and Neubig, G. Opendevin: An open platform for
ai software developers as generalist agents, 2024. URL
https://arxiv.org/abs/2407.16741.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing, 2024.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022.

9

https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
http://papers.nips.cc/paper/2552-intrinsically-motivated-reinforcement-learning
http://papers.nips.cc/paper/2552-intrinsically-motivated-reinforcement-learning
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2305.16291
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

SSEAL: Self-Supervised Explorative Agent Learning

A. SSEAL Prompts
A.1. Function Calling Prompts

A.1.1. EXPLORATION PROMPT

You are an AI agent tasked with exploring a function calling environment. Your
goal is to analyze the provided functions, understand their potential uses, and
propose function calls to resolve any ambiguities or missing information. This
process is similar to running unit tests to better understand the function calling
environment.
Here is the list of functions you have access to:

<functions>
{{FUNCTIONS}}
</functions>

Please follow these steps:
1. Analyze the provided functions:
- Review each function’s name, description, arguments, and return types (if
provided).
- Identify any missing or ambiguous information, such as unspecified return types or
unclear argument formats.
2. Propose function calls:
- For each function, suggest at least one function call that would help clarify its
behavior or resolve ambiguities.
- If a function’s return type is missing or unclear, propose a call with example
input to observe the return type.
- If a function’s argument format is ambiguous, propose multiple calls with different
input formats to determine the correct usage.
Please structure your outputs as follows:

<exploration summary>
<function analysis>
For each function, describe the function call you propose that will help clarify its
behavior, and what you hope to learn from the results
</function analysis>
<function list>
A series of your chosen function calls, in python syntax, separated by newlines.
For example
f(1)
g()
h(4, ’a’)
</function list>
</exploration summary>

A.1.2. OPTIMIZATION PROMPT: CONTEXT

Modify the list of function contexts provided. Specifically add/improve doc-strings
and argument types and return types. You should be very detailed, consider what
ambiguities gave you trouble at the beginning. Give example argument inputs,
example function outputs, and observed error cases. Make sure it is absolutely
clear when and how to use each function. Make sure to include all functions.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

SSEAL: Self-Supervised Explorative Agent Learning

A.1.3. OPTIMIZATION PROMPT: EXAMPLES

<examples>
Give reasonable example user queries on the enviornment. Then show can they can be
answered step by step through calling functions in the environment, in the same way
you have done so above. Be detailed on the process and reasoning.
<examples>

A.1.4. OPTIMIZATION PROMPT: CLARIFICATIONS

Any clarifications, learnings, guides etc. Focus on how to interact with the
environment. Explain to a future agent put in the same environment how they might
go about answering user queries sent to the environment. The future agent will also
only be able to submit functions in the <function list> tags and receive environment
feedback.

A.1.5. SWE-AGENT PROMPT CHANGES

Here’s how I can use some of the commands. I have to keep the DISCUSSION and tool
call sections exactly as below.

Here’s an example of using the ls function:

DISCUSSION
Let’s see what files are in the current directory.
‘‘‘
ls -a
‘‘‘

...

...

...

Here’s an example of using the edit function:

DISCUSSION
Let’s try editing filename.py.
‘‘‘
edit <start line>:<end line>
<replacement text>
end of edit
‘‘‘

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

SSEAL: Self-Supervised Explorative Agent Learning

Figure 7. SSEAL affect on agent performance on LangchainRelational, a simple environment with little ambiguity.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

SSEAL: Self-Supervised Explorative Agent Learning

Figure 8. SSEAL affect on agent performance on LangchainRelational-NoSig.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

SSEAL: Self-Supervised Explorative Agent Learning

Figure 9. LinuxTerminal task accuracy vs exploration steps for different exploration agents, while always using GPT-4o-mini as the
agent during task execution.

14

